Full Online Books
BOOK CATEGORIES
Authors Authors Short Stories Short Stories Long Stories Long Stories Funny Stories Funny Stories Love Stories Love Stories Stories For Kids Stories For Kids Poems Poems Essays Essays Nonfictions Nonfictions Plays Plays Folktales Folktales Fairy Tales Fairy Tales Fables Fables Learning Kitchen Learning Kitchen
LINKS
Valid XHTML 1.0 Transitional Free Classified Website Without Registration Free Classified Website Daniel Company
Twitter Twitter Add book
donate
Full Online Book HomeEssaysThe Advance Of Science In The Last Half-century - Part 4
Famous Authors (View All Authors)
The Advance Of Science In The Last Half-century - Part 4 Post by :DavidDaniels Category :Essays Author :Thomas Henry Huxley Date :May 2012 Read :3677

Click below to download : The Advance Of Science In The Last Half-century - Part 4 (Format : PDF)

The Advance Of Science In The Last Half-century - Part 4

When dealing with the doctrine of the ultimate constitution of matter, we found a certain resemblance between the oldest speculations and the newest doctrines of physical philosophers. But there is no such resemblance between the ancient and modern views of motion and its causes, except in so far as the conception of attractive and repulsive forces may be regarded as the modified descendant of the Aristotelian conception of forms. In fact, it is hardly too much to say that the essential and fundamental difference between ancient and modern physical science lies in the ascertainment of the true laws of statics and dynamics in the course of the last three centuries; and in the invention of mathematical methods of dealing with all the consequences of these laws. The ultimate aim of modern physical science is the deduction of the phenomena exhibited by material bodies from physico-mathematical first principles. Whether the human intellect is strong enough to attain the goal set before it may be a question, but thither will it surely strive.

(Sidenote: (3) Evolution.)

The third great scientific event of our time, the rehabilitation of the doctrine of evolution, is part of the same tendency of increasing knowledge to unify itself, which has led to the doctrine of the conservation of energy. And this tendency, again, is mainly a product of the increasing strength conferred by physical investigation on the belief in the universal validity of that orderly relation of facts, which we express by the so-called 'Laws of Nature.'

(Sidenote: Early stages of this theory)

The growth of a plant from its seed, of an animal from its egg, the apparent origin of innumerable living things from mud, or from the putrefying remains of former organisms, had furnished the earlier scientific thinkers with abundant analogies suggestive of the conception of a corresponding method of cosmic evolution from a formless 'chaos' to an ordered world which might either continue for ever or undergo dissolution into its elements before starting on a new course of evolution. It is therefore no wonder that, from the days of the Ionian school onwards, the view that the universe was the result of such a process should have maintained itself as a leading dogma of philosophy. The emanistic theories which played so great a part in Neoplatonic philosophy and Gnostic theology are forms of evolution. In the seventeenth century, Descartes propounded a scheme of evolution, as an hypothesis of what might have been the mode of origin of the world, while professing to accept the ecclesiastical scheme of creation, as an account of that which actually was its manner of coming into existence. In the eighteenth century, Kant put forth a remarkable speculation as to the origin of the solar system, closely similar to that subsequently adopted by Laplace and destined to become famous under the title of the 'nebular hypothesis.'

The careful observations and the acute reasonings of the Italian geologists of the seventeenth and eighteenth centuries; the speculations of Leibnitz in the 'Protogaea' and of Buffon in his 'Theorie de la Terre;' the sober and profound reasonings of Hutton, in the latter part of the eighteenth century; all these tended to show that the fabric of the earth itself implied the continuance of processes of natural causation for a period of time as great, in relation to human history, as the distances of the heavenly bodies from us are, in relation to terrestrial standards of measurement. The abyss of time began to loom as large as the abyss of space. And this revelation to sight and touch, of a link here and a link there of a practically infinite chain of natural causes and effects, prepared the way, as perhaps nothing else has done, for the modern form of the ancient theory of evolution.

In the beginning of the eighteenth century, De Maillet made the first serious attempt to apply the doctrine to the living world. In the latter part of it, Erasmus Darwin, Goethe, Treviranus, and Lamarck took up the work more vigorously and with better qualifications. The question of special creation, or evolution, lay at the bottom of the fierce disputes which broke out in the French Academy between Cuvier and St.-Hilaire; and, for a time, the supporters of biological evolution were silenced, if not answered, by the alliance of the greatest naturalist of the age with their ecclesiastical opponents. Catastrophism, a short-sighted teleology, and a still more short-sighted orthodoxy, joined forces to crush evolution.

Lyell and Poulett Scrope, in this country, resumed the work of the Italians and of Hutton; and the former, aided by a marvellous power of clear exposition, placed upon an irrefragable basis the truth that natural causes are competent to account for all events, which can be proved to have occurred, in the course of the secular changes which have taken place during the deposition of the stratified rocks. The publication of 'The Principles of Geology,' in 1830, constituted an epoch in geological science. But it also constituted an epoch in the modern history of the doctrines of evolution, by raising in the mind of every intelligent reader this question: If natural causation is competent to account for the not-living part of our globe, why should it not account for the living part?

By keeping this question before the public for some thirty years, Lyell, though the keenest and most formidable of the opponents of the transmutation theory, as it was formulated by Lamarck, was of the greatest possible service in facilitating the reception of the sounder doctrines of a later day. And, in like fashion, another vehement opponent of the transmutation of species, the elder Agassiz, was doomed to help the cause he hated. Agassiz not only maintained the fact of the progressive advance in organisation of the inhabitants of the earth at each successive geological epoch, but he insisted upon the analogy of the steps of this progression with those by which the embryo advances to the adult condition, among the highest forms of each group. In fact, in endeavoring to support these views he went a good way beyond the limits of any cautious interpretation of the facts then known.

(Sidenote: Darwin)

Although little acquainted with biological science, Whewell seems to have taken particular pains with that part of his work which deals with the history of geological and biological speculation; and several chapters of his seventeenth and eighteenth books, which comprise the history of physiology, of comparative anatomy and of the palaetiological sciences, vividly reproduce the controversies of the early days of the Victorian epoch. But here, as in the case of the doctrine of the conservation of energy, the historian of the inductive sciences has no prophetic insight; not even a suspicion of that which the near future was to bring forth. And those who still repeat the once favorite objection that Darwin's 'Origin of Species' is nothing but a new version of the 'Philosophie zoologique' will find that, so late as 1844, Whewell had not the slightest suspicion of Darwin's main theorem, even as a logical possibility. In fact, the publication of that theorem by Darwin and Wallace, in 1859, took all the biological world by surprise. Neither those who were inclined towards the 'progressive transmutation' or 'development' doctrine, as it was then called, nor those who were opposed to it, had the slightest suspicion that the tendency to variation in living beings, which all admitted as a matter of fact; the selective influence of conditions, which no one could deny to be a matter of fact, when his attention was drawn to the evidence; and the occurrence of great geological changes which also was matter of fact; could be used as the only necessary postulates of a theory of the evolution of plants and animals which, even if not at once, competent to explain all the known facts of biological science, could not be shown to be inconsistent with any. So far as biology is concerned, the publication of the 'Origin of Species,' for the first time, put the doctrine of evolution, in its application to living things, upon a sound scientific foundation. It became an instrument of investigation, and in no hands did it prove more brilliantly profitable than in those of Darwin himself. His publications on the effects of domestication in plants and animals, on the influence of cross-fertilisation, on flowers as organs for effecting such fertilisation, on insectivorous plants, on the motions of plants, pointed out the routes of exploration which have since been followed by hosts of inquirers, to the great profit of science.

Darwin found the biological world a more than sufficient field for even his great powers, and left the cosmical part of the doctrine to others. Not much has been added to the nebular hypothesis, since the time of Laplace, except that the attempt to show (against that hypothesis) that all nebulae are star clusters, has been met by the spectroscopic proof of the gaseous condition of some of them. Moreover, physicists of the present generation appear now to accept the secular cooling of the earth, which is one of the corollaries of that hypothesis. In fact, attempts have been made, by the help of deductions from the data of physics, to lay down an approximate limit to the number of millions of years which have elapsed since the earth was habitable by living beings. If the conclusions thus reached should stand the test of further investigation, they will undoubtedly be very valuable. But, whether true or false, they can have no influence upon the doctrine of evolution in its application to living organisms. The occurrence of successive forms of life upon our globe is an historical fact, which cannot be disputed; and the relation of these successive forms, as stages of evolution of the same type, is established in various cases. The biologist has no means of determining the time over which the process of evolution has extended, but accepts the computation of the physical geologist and the physicist, whatever that may be.

(Sidenote: and philosophy)

Evolution as a philosophical doctrine applicable to all phenomena, whether physical or mental, whether manifested by material atoms or by men in society, has been dealt with systematically in the 'Synthetic Philosophy' of Mr. Herbert Spencer. Comment on that great undertaking would not be in place here. I mention it because, so far as I know, it is the first attempt to deal, on scientific principles, with modern scientific facts and speculations. For the 'Philosophic positive' of M. Comte, with which Mr. Spencer's system of philosophy is sometimes compared, though it professes a similar object, is unfortunately permeated by a thoroughly unscientific spirit, and its author had no adequate acquaintance with the physical sciences even of his own time.

* * * * *

The doctrine of evolution, so far as the present physical cosmos is concerned, postulates the fixity of the rules of operation of the causes of motion in the material universe. If all kinds of matter are modifications of one kind, and if all modes of motion are derived from the same energy, the orderly evolution of physical nature out of one substratum and one energy implies that the rules of action of that energy should be fixed and definite. In the past history of the universe, back to that point, there can be no room for chance or disorder. But it is possible to raise the question whether this universe of simplest matter and definitely operating energy, which forms our hypothetical starting point, may not itself be a product of evolution from a universe of such matter, in which the manifestations of energy were not definite--in which, for example, our laws of motion held good for some units and not for others, or for the same units at one time and not at another--and which would therefore be a real epicurean chance-world?

For myself, I must confess that I find the air of this region of speculation too rarefied for my constitution, and I am disposed to take refuge in 'ignoramus et ignorabimus.'

(Sidenote: Other achievements in physical science.)

The execution of my further task, the indication of the most important achievements in the several branches of physical science during the last fifty years, is embarrassed by the abundance of the objects of choice; and by the difficulty which everyone, but a specialist in each department, must find in drawing a due distinction between discoveries which strike the imagination by their novelty, or by their practical influence, and those unobtrusive but pregnant observations and experiments in which the germs of the great things of the future really lie. Moreover, my limits restrict me to little more than a bare chronicle of the events which I have to notice.

(Sidenote: Physics and chemistry.)

In physics and chemistry, the old boundaries of which sciences are rapidly becoming effaced, one can hardly go wrong in ascribing a primary value to the investigations into the relation between the solid, liquid, and gaseous states of matter on the one hand, and degrees of pressure and of heat on the other. Almost all, even the most refractory, solids have been vaporised by the intense heat of the electric arc; and the most refractory gases have been forced to assume the liquid, and even the solid, forms by the combination of high pressure with intense cold. It has further been shown that there is no discontinuity between these states--that a gas passes into the liquid state through a condition which is neither one nor the other, and that a liquid body becomes solid, or a solid liquid, by the intermediation of a condition in which it is neither truly solid nor truly liquid.

Theoretical and experimental investigations have concurred in the establishment of the view that a gas is a body, the particles of which are in incessant rectilinear motion at high velocities, colliding with one another and bounding back when they strike the walls of the containing vessel; and, on this theory, the already ascertained relations of gaseous bodies to heat and pressure have been shown to be deducible from mechanical principles. Immense improvements have been effected, in the means of exhausting a given space of its gaseous contents; and experimentation on the phenomena which attend the electric discharge and the action of radiant heat, within the extremely rarefied media thus produced, has yielded a great number of remarkable results, some of which have been made familiar to the public by the Gieseler tubes and the radiometer. Already, these investigations have afforded an unexpected insight into the constitution of matter and its relations with thermal and electric energy, and they open up a vast field for future inquiry into some of the deepest problems of physics. Other important steps, in the same direction, have been effected by investigations into the absorption of radiant heat proceeding from different sources by solid, fluid, and gaseous bodies. And it is a curious example of the interconnection of the various branches of physical science, that some of the results thus obtained have proved of great importance in meteorology.

(Sidenote: The spectroscope.)

The existence of numerous dark lines, constant in their number and position in the various regions of the solar spectrum, was made out by Fraunhofer in the early part of the present century, but more than forty years elapsed before their causes were ascertained and their importance recognised. Spectroscopy, which then took its rise, is probably that employment of physical knowledge, already won, as a means of further acquisition, which most impresses the imagination. For it has suddenly and immensely enlarged our power of overcoming the obstacles which almost infinite minuteness on the one hand, and almost infinite distance on the other, have hitherto opposed to the recognition of the presence and the condition of matter. One eighteen-millionth of a grain of sodium in the flame of a spirit-lamp may be detected by this instrument; and, at the same time, it gives trust-worthy indications of the material constitution not only of the sun, but of the farthest of those fixed stars and nebulae which afford sufficient light to affect the eye, or the photographic plate, of the inquirer.

(Sidenote: Electricity.)

The mathematical and experimental elucidation of the phenomena of electricity, and the study of the relations of this form of energy with chemical and thermal action, had made extensive progress before 1837. But the determination of the influence of magnetism on light, the discovery of diamagnetism, of the influence of crystalline structure on magnetism, and the completion of the mathematical theory of electricity, all belong to the present epoch. To it also appertain the practical execution and the working out of the results of the great international system of observations on terrestrial magnetism, suggested by Humboldt in 1836; and the invention of instruments of infinite delicacy and precision for the quantitative determination of electrical phenomena. The voltaic battery has received vast improvements; while the invention of magneto-electric engines and of improved means of producing ordinary electricity has provided sources of electrical energy vastly superior to any before extant in power, and far more convenient for use.

It is perhaps this branch of physical science which may claim the palm for its practical fruits, no less than for the aid which it has furnished to the investigation of other parts of the field of physical science. The idea of the practicability of establishing a communication between distant points, by means of electricity, could hardly fail to have simmered in the minds of ingenious men since, well nigh a century ago, experimental proof was given that electric disturbances could be propagated through a wire twelve thousand feet long. Various methods of carrying the suggestion into practice had been carried out with some degree of success; but the system of electric telegraphy, which, at the present time, brings all parts of the civilised world within a few minutes of one another, originated only about the commencement of the epoch under consideration. In its influence on the course of human affairs, this invention takes its place beside that of gunpowder, which tended to abolish the physical inequalities of fighting men; of printing, which tended to destroy the effect of inequalities in wealth among learning men; of steam transport, which has done the like for travelling men. All these gifts of science are aids in the process of levelling up; of removing the ignorant and baneful prejudices of nation against nation, province against province, and class against class; of assuring that social order which is the foundation of progress, which has redeemed Europe from barbarism, and against which one is glad to think that those who, in our time, are employing themselves in fanning the embers of ancient wrong, in setting class against class, and in trying to tear asunder the existing bonds of unity, are undertaking a futile struggle. The telephone is only second in practical importance to the electric telegraph. Invented, as it were, only the other day, it has already taken its place as an appliance of daily life. Sixty years ago, the extraction of metals from their solutions, by the electric current, was simply a highly interesting scientific fact. At the present day, the galvano-plastic art is a great industry; and, in combination with photography, promises to be of endless service in the arts. Electric lighting is another great gift of science to civilisation, the practical effects of which have not yet been fully developed, largely on account of its cost. But those whose memories go back to the tinder-box period, and recollect the cost of the first lucifer matches, will not despair of the results of the application of science and ingenuity to the cheap production of anything for which there is a large demand.

The influence of the progress of electrical knowledge and invention upon that of investigation in other fields of science is highly remarkable. The combination of electrical with mechanical contrivances has produced instruments by which, not only may extremely small intervals of time be exactly measured, but the varying rapidity of movements, which take place in such intervals and appear to the ordinary sense instantaneous, is recorded. The duration of the winking of an eye is a proverbial expression for an instantaneous action; but, by the help of the revolving cylinder and the electrical marking-apparatus, it is possible to obtain a graphic record of such an action, in which, if it endures a second, that second shall be subdivided into a hundred, or a thousand, equal parts, and the state of the action at each hundredth, or thousandth, of a second exhibited. In fact, these instruments may be said to be time-microscopes. Such appliances have not only effected a revolution in physiology, by the power of analysing the phenomena of muscular and nervous activity which they have conferred, but they have furnished new methods of measuring the rate of movement of projectiles to the artillerist. Again, the microphone, which renders the minutest movements audible, and which enables a listener to hear the footfall of a fly, has equipped the sense of hearing with the means of entering almost as deeply into the penetralia of nature, as does the sense of sight.

(Sidenote: Photography as an instrument of science.)

That light exerts a remarkable influence in bringing about certain chemical combinations and decompositions was well known fifty years ago, and various more or less successful attempts to produce permanent pictures, by the help of that knowledge, had already been made. It was not till 1839, however, that practical success was obtained; but the 'daguerreotypes' were both cumbrous and costly, and photography would never have attained its present important development had not the progress of invention substituted paper and glass for the silvered plates then in use. It is not my affair to dwell upon the practical application of the photography of the present day, but it is germane to my purpose to remark that it has furnished a most valuable accessory to the methods of recording motions and lapse of time already in existence. In the hands of the astronomer and the meteorologist, it has yielded means of registering terrestrial, solar, planetary, and stellar phenomena, independent of the sources of error attendant on ordinary observation; in the hands of the physicist, not only does it record spectroscopic phenomena with unsurpassable ease and precision, but it has revealed the existence of rays having powerful chemical energy, or beyond the visible limits of either end of the spectrum; while, to the naturalist, it furnishes the means by which the forms of many highly complicated objects may be represented, without that possibility of error which is inherent in the work of the draughtsman. In fact, in many cases, the stern impartiality of photography is an objection to its employment: it makes no distinction between the important and the unimportant; and hence photographs of dissections, for example, are rarely so useful as the work of a draughtsman who is at once accurate and intelligent.

(Sidenote: Astronomy,)

The determination of the existence of a new planet, Neptune, far beyond the previously known bounds of the solar system, by mathematical deduction from the facts of perturbation; and the immediate confirmation of that determination, in the year 1846, by observers who turned their telescopes into the part of the heavens indicated as its place, constitute a remarkable testimony of nature to the validity of the principles of the astronomy of our time. In addition, so many new asteroids have been added to those which were already known to circulate in the place which theoretically should be occupied by a planet, between Mars and Jupiter, that their number now amounts to between two and three hundred. I have already alluded to the extension of our knowledge of the nature of the heavenly bodies by the employment of spectroscopy. It has not only thrown wonderful light upon the physical and chemical constitution of the sun, fixed stars, and nebulae, and comets, but it holds out a prospect of obtaining definite evidence as to the nature of our so-called elementary bodies.

(Sidenote: its relation to geology.)

The application of the generalisations of thermotics to the problem of the duration of the earth, and of deductions from tidal phenomena to the determination of the length of the day and of the time of revolution of the moon, in past epochs of the history of the universe; and the demonstration of the competency of the great secular changes, known under the general name of the precession of the equinoxes, to cause corresponding modifications in the climate of the two hemispheres of our globe, have brought astronomy into intimate relation with geology. Geology, in fact, proves that, in the course of the past history of the earth, the climatic conditions of the same region have been widely different, and seeks the explanation of this important truth from the sister sciences. The facts that, in the middle of the Tertiary epoch, evergreen trees abounded within the arctic circle; and that, in the long subsequent Quaternary epoch, an arctic climate, with its accompaniment of gigantic glaciers, obtained in the northern hemisphere, as far south as Switzerland and Central France, are as well established as any truths of science. But, whether the explanation of these extreme variations in the mean temperature of a great part of the northern hemisphere is to be sought in the concomitant changes in the distribution of land and water surfaces of which geology affords evidence, or in astronomical conditions, such as those to which I have referred, is a question which must await its answer from the science of the future.

(Sidenote: Biological sciences.)

(Sidenote: The 'cell theory.')

If you like this book please share to your friends :
NEXT BOOKS

The Advance Of Science In The Last Half-century - Part 5 The Advance Of Science In The Last Half-century - Part 5

The Advance Of Science In The Last Half-century - Part 5
Turning now to the great steps in that progress which the biological sciences have made since 1837, we are met, on the threshold of our epoch, with perhaps the greatest of all--namely, the promulgation by Schwann, in 1839, of the generalisation known as the 'cell theory,' the application and extension of which by a host of subsequent investigators has revolutionised morphology, development, and physiology. Thanks to the immense series of labors thus inaugurated, the following fundamental truths have been established. (Sidenote: Fundamental truths established.) All living bodies contain substances of closely similar physical and chemical composition, which constitute the physical basis
PREVIOUS BOOKS

Backlog Studies - Eleventh Study Backlog Studies - Eleventh Study

Backlog Studies - Eleventh Study
It happened, or rather, to tell the truth, it was contrived,--for I have waited too long for things to turn up to have much faith in "happen," that we who have sat by this hearthstone before should all be together on Christmas eve. There was a splendid backlog of hickory just beginning to burn with a glow that promised to grow more fiery till long past midnight, which would have needed no apology in a loggers' camp,--not so much as the religion of which a lady (in a city which shall be nameless) said, "If you must have a religion, this
NEXT 10 BOOKS | PREVIOUS 10 BOOKS | RANDOM 10 BOOKS
LEAVE A COMMENT